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Tot, sign, and normal force measurements were made during single step stress relaxation experiments on a 
polymeric glass (PMMA).  Isochronal data were analysed using an approach adapted from that 
developed by Penn and Kearsley ~ (for incompressible elastic materials) to determine the derivatives 
~W/~I 1 and ~W/~ l  2 of the time dependent strain potential function. ~W/a l  1 and ~W/OI 2 are determined 
from existing solution to the torsion of an incompressible cylinder. A special solution to the torsion of a 
compressible cylinder is presented and it is shown that the values of ~W/OI~ and ~W/~ l  2 obtained using 
this solution to analyse the data do not differ greatly from those obtained using the incompressible 
solution. It is found from both solutions that ~W/~I~ is negative and increases towards zero with 
increasing time and deformation while ~W/~l  2 is positive, greater in magnitude than ~W/~l~ and 
decreases towards zero with increasing time and deformation. These results were unexpected and a full 
understanding of their meaning has yet to be reached. 

(Keywords: compressible material; non-linear viscoelasticity; poly(methyl methacrylate); polymer 
glass; strain potential function; torsion) 

I N T R O D U C T I O N  

Several years ago, Penn and Kearsley 1 showed that data 
obtained from torque and normal force measurements on 
an elastic cylinder subjected to a twist with the length held 
constant can be used to determine the derivatives of the 
elastic strain energy function for an incompressible ma- 
terial. In addition, Rivlin 2 has shown that for single step 
stress relaxation type deformation histories on viscoelas- 
tic materials isochronal data can be treated in the same 
fashion as equilibrium data for an elastic material. Using 
these results, we subsequently reported 3'4, in brief, on 
relaxation experiments in torsion of poly(methyl methac- 
rylate) in which values of the strain potential function 
derivatives were obtained assuming that the torsion 
applied to the material is an isochoric motion, i.e. no 
volume change occurred. The salient results of this prior 
work were that cTW/~ll was found to be negative and to 
increase (towards zero) with both time and deformation. 
At the same time t3W/dI2 was positive, greater in magni- 
tude than ~W/~I~, and decreased with both increasing 
time and deformation. 

Although these results were unexpected, they did 
permit us to explain, qualitatively at least, some unusual 
results reported first by Sternstein and Ho s, and observed 
at somewhat larger deformations by us 4, i.e., the rate of 
stress relaxation in torsion can be greater than it is in 
extension, even at relatively small deformations, without 
invoking a time dependent Poisson's ratio for the ma- 
terial. See ref. 3 for a discussion of this. 

Although we were able to use our results from the 
incompressible material analysis quite successfully, we 
had to acknowledge upon questioning 6 that it was merely 
an approximation. Furthermore, results obtained by one 
of us 7 and recent data reported in the literature 8 have 
shown that torsion of cylinders of polymer glasses results 

in measurable, albeit small, volume changes.* Therefore, 
we have reanalysed our results in light of a more exact 
solution for torsion of a compressible material. In this 
paper we report in detail the experimental results and 
show that the compressible material analysis of the 
torsion problem gives (qualitatively) the same important 
results as the incompressible material analysis; i.e. that for 
PMMA 0W/011 is negative and OW/~I 2 is positive and 
greater in magnitude than ?W/OI 1. 

EXPERIMENTAL 

The poly(methyl methacrylate) used in this study was a 
commercial grade material. It was obtained as solid rods 
which were annealedt at 100°C for 24 h, oven cooled at 

3°C min - 1, machined to a diameter of 2.52 cm and then 
tested. Examination of the cylinders between crossed 
polarizers indicated no residual orientation in the 
cylinders. 

Single step stress relaxation experiments were perfor- 
med in torsion maintaining the cylinder length constant. 
Both torque and normal force were measured at times 
which increased in powers of two from 0.05 to 1678 s. The 
time required to apply the step in deformation varied with 
the magnitude of the deformation, but never exceeded 
0.10 s. Overshoot in the deformation was less than 2~o. 

Two specimens were used for all of the tests. The 
deformations were applied to each specimen starting with 

*Interestingly in Poynting's 9 original experiments he was able to 
measure the dilatation of steel wires subjected to twisting moments. On 
the other hand Matsuoka s and we 7 have found that polymer glasses 
decrease in volume on twisting whether with free 8 or fixed 7 ends. 
t The samples were 'annealed' at 100°C which is near the glass transition 
for PMMA (Tg-~ 105°C) and oven cooled to closely match the thermal 
history used by Sternstein and Ho 5. It is recognized that thermal history 
significantly affects the mechanical properties of glasses 2°. 
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the lowest and increasing to the highest as follows: (1) 
deformation 7i applied to the sample for 1678 s, (2) 
deformation returned to zero and sample held at zero 
deformation for a minimum of 18 000 s (5 h) to reduce 
effects of previous deformation history, (3) deformation 
7i+1 >?i applied to sample for 1678 s, (4) deformation 
returned to zero and sample held at zero deformation 
18000s, (5) steps 3 and 4 repeated until the highest 
deformation was reached. 

The mechanical testing was performed using in In- 
stron* servocontrolled tension-torsion hydraulic test 
machine. The machine was interfaced with a Hewlett- 
Packard 2100 mini-computer* for control and data acqui- 
sition. All tests were carried out at 296 + 1 K (23°C + I°C) 
in laboratory air. 

THEORETICAL CONSIDERATIONS 

Incompressible material 
For simple visocelastic materials Rivlin 2 has shown 

that for certain deformation histories, such as those 
obtained in single step stress relaxation experiments, one 
can treat isochronal data in the same manner as equilib- 
rium data for elastic materials. For incrompressible 
materials, he showed that the stress in any deformation 
can be described using two material functions which are 
functions of time, t, and the invariants in the principal 
stretches, 11 and 12. Though one need not assume the 
existence of a strain potential (or energy) function to 
describe single step stress relaxation histories, we shall use 
the BKZl°-type notation consistent with our prior 
workS.teA 2. 

In the BKZtheory of an elastic fluid 1 o, the existence of a 
time dependent strain potential function is postulated. If 
we consider single step stress relaxation deformations, 
then we can define isochronal values for the derivatives of 
the strain potential function as follows: 

t 

dW f. dU 
W~(t) = __ffff(Ii'I2't) = | ~(I18i~ ,12.t- r)dz (1) 

l i t  

- c o  

where U is the potential function of the BKZ theory, and 
now the It's are the i th invariants of the left relative Cauchy 
deformation tensor, t is the present time, and z is the past 
time. 

For torsion of an elastic rod with fixed ends, Penn and 
Kearsley I have shown that the derivatives of the strain 
energy function can be determined from torque and 
normal force measurements at varying angles of twist. The 
relevant equations are1: 

R 
t ~  

T=4n$/[I411 + W2]radr (2) 
t /  

0 

and the normal force, N, by: 
R 

N = - 2~q2f  [W1 + 2W2]radr (3) 

0 

where the W~ are the derivatives of the strain energy 
function, ~ is the angle of twist per unit length, R is the 

* Certain commercial materials and equipment are identified in this 
paper in order to specify adequately the experimental procedure. In no 
case does such identification imply recommendation or endorsement by 
the National Bureau of Standards, nor does it imply necessarily the best 
available for the purpose. 

outer radius of the cylinder and r is the radial position 
coordinate. By making a variable change and 
differentiating the torque with respect to ~ and the normal 
force with respect to ~2, Penn and Kearsley were able to 
derive two algebraic equations for Wt and W2 in terms of 
the experimental variables. By a similar analysis for a 
material with a time dependent strain potential function 
we arrive at similar equations: 

1 
W~ (t) + W2(t ) = ~ ( 3  T+ ~ T~) (4) 

1 
Wt(t) + 2 Wa(t) = ~ N  + q2N~2) (5) / t ~ - / x  

where T~= OT/O~ and N,2= ON/a(~2). These equations 
can then be solved simultaneously for Wx and W2 for any 
value of time, t. 

Torsion of a compressible cylinder 
The approach we take in the solution of the problem of 

torsion of a compressible material is similar to that used 
for the incompressible one in that we postulate the 
existence of a time dependent strain potential function 
W(It,12,Ia,t ) where we note that now the strain potential 
function depends also on the third invariant of the 
deformation, I a. The solution to the problem of torsion of 
a compressible cylinder has been treated in various 
fashions by Odgen 13,14, Blackburn and Green i s, Wack 16, 
Levinson 17, and Green and Zerna I s to mention just a few. 
Because the general solution of an inhomogeneous defor- 
mation of a compressible material requires explicit know- 
ledge of the strain energy function most analyses have 
focussed on almost incompressible materials13,14,16, per- 
turbation methods 17 or assumed forms of the strain 
energy function coupled with numerical solutions 16'1T. In 
this work, we assume a deformation in which the volume 
change depends only on radial position in the cylinder 
and then solve the problem exactly for the torque and 
normal force responses. These results can be used to show 
that the W1(t) and W2(t ) values obtained from the 
,compressible material analysis are not greatly different 
from those obtained using the incompressible analysis 
and, therefore, the major conclusions from ref. 3 remain 
unchanged. Furthermore, we evaluate Wl(t ) and W2(t) 
from our data if it is further assumed that the strain 
potential function is of such a form that volume change is 
associated only with the hydrostatic pressure and the bulk 
modulus. The details of our solution are presented in 
Appendix A, the important results follow here. 

The equations for the torque and normal force of a 
compressible cylinder subjected to a twist with constant 
length and for which the volume ratio, ~, is a function of 
radial position only, i.e. # = p(r) are given by: 

R 

4n~ I p(r)[W1 + W2]radr (6) T= 
i t  

0 

R 
t~ 

= - 2n =| . ( r ) r  w, N + 2 W2]ra dr 
e,I 

0 

R 

0 
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where the variables are defined as in the previous section 
except that R is now the radius of the cylinder in the 
deformed configuration and the volume ratio /x(r) is 
defined below. 

Equations (6) and (7) were derived without making any 
assumptions about the form of the strain potential 
function. Before going further in the analysis, it is possible 
to compare equations (6) and (7) with their counterparts 
for the incompressible cylinder, equations (2) and (3). First 
we note that equation (6) differs from equation (2) only in 
that R has now changed and by the presence of the volume 
function /x(r)= 1/x/~a inside the integral, multiplying 
(W l + W2). The equation (7) for the normal force, however, 
is quite different. Not only has R changed and p(r) 
multiplies (I411 +2W2), but there is an additional term 
which includes WI, W 2 and/x(r). Note that this term is a 
function of r rather than r 3 and that its dependence on 
comes only through the functional dependence of I411, W2 
and # on the strain invariants 11, 12 and 13. At this point 
these are unknown. However, we can say one thing about 
this term. If the volume change is negative, i.e./x(r) > 1, 
then since (W~ + W2)> 0, the magnitude of N is decreased 
relative to the incompressible solution (for the same 
values of V¢~ and I412). The inverse is true if the volume 
change is dilational, i.e. #(r)< 1. Thus, because it is 
experimentally observed that polymer glasses decrease in 
volume 7's when subjected to a torsion, our previous 
analysis using incompressible theory would actually be 
'conservative' because the large normal force in equations 
(4) and (5) is responsible for the result that I4'1 is negative. 
Thus simply from examination of the equations, one can 
see that our prior results, while perhaps quantitatively 
incorrect, were qualitatively correct. In what follows, we 
will show that with the not unreasonable assumption that 
volume changes associated with the twisting of the 
cylinder are due to the hydrostatic pressure alone, the 
quantitative differences between the results from the 
compressible and incompressible analysis are not very 
large. The analysis is given in detail in Appendix B. 

If we perform the same type of analysis as Penn and 
Kearsley 1 carried out for the incompressible cylinder we 
find two equations in the experimental variables, but three 
unknowns, W l, I412 and/x (see Appendix B). 

(8) 

300 

-(1 + ~)4{z(w~ + 2w~)[11~ ~ ] 
(9) 

where the variables are as defined previously and ~ is a 
small number which reflects the change in the radius R 
relative to the radius in the undeformed configuration. As 
noted in Appendix B it does not significantly affect the 
results. 

With just equations (8) and (9) we cannot determine W 1. 
W: and #. If, however, we make the assumption that the 
volume change depends only on the hydrostatic pressure, 
we arrive at a third equation (see Appendix B): 

(ply2- l ) g  = ~ [ (1  "b ~02 -i- Rz(ll+ e)2 (~1~- 1))W1 
(10) 

1 1 
+ ( l + ~ + R 2 ( l + e ) 2 ( ~ - l ) ) W 2 ]  

Thus, equations (8), (9) and (10) form a system of non- 
linear equations in terms of the experimental variables. 
This system of equations is readily solved using a 
Newton-Raphson numerical technique 19. The results 
show that there is not a great difference between the 
solution given by the compressible material analysis and 
the incompressible material analysis. In the following 
section we present the data and compare the results for 
Wi(ll,I2,t) with those for Wi(Ii,I2,la,t ). 

RESULTS 

In Figure 1 are presented the torque data for PMMA as a 
function of angle of twist and at the 0.41, 1.64, 13.1,105 
and 1678 second isochrones. In Figure 2 the results for the 
normal force are presented. While the normal force data 
show more scatter, the fact that replicate tests and a large 
number of deformations were used gives us a confidence in 
these data of +10~o above ~=1.187 (g~R=?=0.015). 
Below this deformation the results are based on an 
extrapolation using a slope of 2 (i.e. N~g,2). We note from 
the nonconstancy of the slopes for the torque (and the 
normal force) data that the PMMA exhibits nonlinear 
(non-second order) behaviour at relatively small defor- 
mations and we observe that the onset of the nonlinear 
behaviour moves to smaller deformations as the time 
increases. 

These torque and normal force data were used to obtain 
values for Wl(t) and W2(t) from the incompressible 
material analysis for torsion of a cylinder (c.f. equations (4) 
and (5)). The results are presented in Figures 3 and 4 as 

Z 

I 

7 
tOO - 

I O -  

5 
0.10 

#[ W1 -t- W2](1 + s)4/1 [- + 3e ] _  ¢,M+ + 3M 

L 1 +e  _J 4heR 4 

I 
I0 

~# (rod/m) 

Figure  1 Torque vs. ~, isochrones from single step stress 
relaxation experiments on P M M A  solid cylinders (annealed at 
296 K )  Curve A: 0.41s; curve B: 1.64s; curve C: 13.1s; curve D: 
105s; curve E: 1678s 

I0.0 
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F i g u r e  2 Normal force vs. ~ isochrones f rom single step 
relaxat ion exper iments on P M M A  solid cyl inders (annealed at 
296 K). (See Figure 1) 
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F i g u r e  3 Incompressible analysis of  annealed P M M A .  OW/~I 1 
vs. t ime at var ious values of strain (@R) as indicated. Calculated 
f rom data of  Figures 1 and 2 using the incompressible material 
analysis 

plots of W1 =t~W/t~I 1 and W2=~W/t~I 2 v s .  log(t) at 
different values of maximum strain in the cylinder 7 = q~R. 
As can be seen, W1 is negative and increases towards zero 
with increasing time and deformation. At the largest 
deformations and at the longest times W~ becomes 
positive. W2, on the other hand is positive and decreases 
towards zero as both time and deformation decreases. In 
all cases where W1 is negative W2 is larger in magnitude 
then W2, as expected since 2(W1 + W2) is the shear modulus 
and must be positive. 

In order to compare the results from the compressible 
material analysis with those for the incompressible ma- 
terial, we carried out a numerical solution to equations (8), 
(9) and (10) using a value for the bulk modulus, K, for 
PMMA of 2.11 GPa which was determined from the 
small strain torque and compression data on the same 
cylinders of PMMA as used in this study. K was found to 
be time independent in these experiments. The results for 
W~ = O W/ O I 1 and W 2 = t3W/ c3 I 2 are presented in Figures 5 
and 6 as plots of W~ and W2 vs. log(t) at different values of 
maximum strain in the cylinder, ~OR. The results are quite 
similar to those obtained from the incompressible ana- 
lysis. W1 is negative and increases towards zero with 
increasing time and deformation. At large deformations 
and long times it becomes positive. W 2 is positive and 
decreases with increasing time and deformation. In all 
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F i g u r e  5 Compressible analysis of  annealed P M M A .  8W/OI 1 vs. 
t ime at var ious values of  strain (@R) as indicated. Calculated from 
data of  Figures I and 2 using the compressible material analysis 
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F i g u r e  4 Incompressible analysis of  annealed P M M A .  #W/#I 2 
vs. t ime at var ious values of  strain (@R) as indicated. Calculated 
f rom data of  Figures I and 2 using the incompressible material 
analysis 
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vs. t ime at var ious values of  strain (~R)  as indicated. Calculated 
f rom data of  Figures I and 2 using the compressible material 
analysis 
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cases in which W~ is negative, W2 is greater in magnitude. 
Therefore 2~(W 1 + W  z) (the shear modulus) is always 
positive, as expected. In fact, the differences in W1 and W 2 
determined from the compressible and incompressible 
analyses is at most only about 25~o, except near zero 
where some sign changes occur in I411. 

SUMMARY 

In the past, we presented results for the strain potential 
function of a polymer glass (PMMA) based upon an 
incompressible material analysis for a viscoelastic rod 
subjected to single step stress relaxation histories in 
torsion at fixed length 3. In this paper we have shown that 
the analysis of the same data using a solution to the 
torsion of a compressible cylinder does not significantly 
alter the results reported previously, i.e., that ?~W/#I 1 is 
negative and increases (towards zero) with increasing time 
and deformation. On the other hand, 0W/~I2 is positive, 
greater in magnitude than ~W/~II, and increases towards 
zero with increasing time and deformation. 

A general solution to the torsion of a rod of compre- 
ssible material is presented for the case in which volume 
changes are dependent on only the radial position, r. This 
analysis shows that, in materials for which the volume 
change upon torsion is negative (compressive), the normal 
force measured is lower than it would be for the incom- 
pressible cylinder with the same i~W/?.l 1 and ~W/~I 2. This 
suggests that the results which we presented previously 
were qualitatively correct, because the negative c~W/~I 1 
occurred because of the high normal forces actually 
measured. 

Reanalysis of the torque and normal force data ob- 
tained on PMMA assuming that the volume change was 
due totally to the pressure times the bulk modulus, gave 
quantitative results for the derivatives of the strain 
potential function of a compressible material. The results 
from the compressible material analysis and the incom- 
pressible material analysis were compared and found to 
differ by only about 25~o except where c~W/OI~ crossed 
through zero. Thus, we have shown that the derivatives of 
the strain potential function for PMMA can be de- 
termined within a fair accuracy from torque and normal 
force measurements on rods subjected to twist at constant 
length. 

We have shown nearly unequivocally the existence of a 
negative ?~W/~?I~ for PMMA. This result also supports 
the observation 3,s and approximate calculations that at 
relatively small deformations the rate of relaxation in 
torsion and in simple extension can be different even 
without a time varying Poisson's ratio. 

Although we assumed that the strain potential function 
is of a form in which the volume change is dependent only 
on the hydrostatic pressure and the bulk modulus, further 
work is required to verify this. Simultaneous and accurate 
measurement of volume changes, torque and normal 
forces as functions of twist could be used to more 
accurately determine the material functions of compre- 
ssible materials. 
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APPENDIX A. TORSION OF A CYLINDER OF 
COMPRESSIBLE MATERIAL 

In this appendix we follow the approach of Green and 
Zerna 18 in the solution of problems in finite elasticity. 

Definino the deformation 
We consider a cylinder which in the undeformed state 

has a radius Ro and a length l, and we consider a torsional 
deformation of the cylinder in which planes normal to the 
axis remain plane and undergo only a pure rotation 
proportional to their distance from one end of the 
cylinder. The body remains cylindrical in form and in the 
strained state will have a length l and a radius R. 

The curvilinear coordinate system 0~ in the strained 
state of the cylinder is taken to be a system of cylindrical 
polar coordinates (r,O,Z) so that 

01 = t ;  02=0  ; 03=Z 

Yl = r c o s 0 ;  y2=rsinO; y 3 = Z  

(A.1) 

The Yl axes are taken to coincide with the Zi axes and, 
with the above assumptions about the deformation, the 
point (r,O,Z) in the deformed state was originally at (p(r)r, 
0 -  ugZ, Z) in the underformed state, tF is the angle of twist 
per unit length and #(r) is a function which describes the 
change of radial position due to the volume change. We 
do not allow changes in volume to be functions of 0 or Z. 
Then 

REFERENCES 

1 Penn, R. W. and Kearsley, E. A. Trans. Soc. Rheology, 1976, 20, 
227 

2 Rivlin, R. S. Quart. Appl. Math. 1956, 14, 83 

ZI = #(r)rc°s(O-°dZ);  Z2 = ~(r)rsin (O-°dZ);  ~(3=Z 
(A.2) 

The components of the metric tensors are found from 
(A.1) and (A.2) to be: 

POLYMER, 1985, Vol 26, April 547 



Strain potential function of a polymeric glass." G. B. McKenna and L. J. Zapas 

In the deformed state: 

Gig = r 2 G ii = 1/r 2 (A.3) 
0 0 

"t "33~-- 2/~(r)-~l + 2/~(r)I1 1 "lOw 

F~w ~w-I 

2 dW 
/~(r) ~3I 3 

and in the undeformed state: 

I i  0 0 gik = #2(r) r2 - ~k#X(r) r2 
-- ~//~2(r)r2 1 + ~21~2(r)r2 

I: ° 
o'~= O 5 + I__L_ 

p2(r)r2 
u7 

(A.4) 

2731 ~__.TI2 = ~ . 1 3  ~_~ ~.21 ~-~0 

When the strained cylinder is in equilibrium, and the body 
forces are zero, the equations of equilibrium become: 

(A.10) 

where the comma denotes partial differentiation and the 
F~ denotes the Christoffel symbols of the second kind. 
The only Christoffel symbols, derived from the metric 
tensor of the strained body, which are non-zero are 

The strain invariants are given by: 

1 
It = o~G~= 2 + ~  +~/2r2 

1 
F ~ = = - r  and rh=rL=- (A.11) 

r 

Then from (A.9)-(A.11) we obtain 

2 
12 = o ,sG':I3  = i-~T~r] + 1 + ~kZr ~ 

1 
13 = [G[/Iol = #2(r) 

(A.5) 

where we note that for the incompressible case the 
invariants would have been 11 = 12 = 3 + ~b2r 2. 

Cons t i tu t ive  equat ion 

For an elastic body the constitutive equation relating 
stress to strain is: 

2 d W  ij 2 OW i ~ - O W  i "" - - -  - -  B J + 2 x / I 3 - - G  J (A.6) 

where z ~j is the contravariant stress tensor, the I{s are the 
strain invariants defined by equation (A.5), W is the strain 
energy function and W = W(1~,I2,I3) ,  0 ° and G ~j are the 
metric tensors and f f J  is defined by 

/~T1 1 ,.el , __ r2 ,c22 
- - +  =0  
c~r r 

~30 OZ 

(A.12) 

dW 2 dW 
where p = 2 ~  ~i 3 =----p(r)  ~I3 and can be determined, 

apart from a constant of integration by the equation. 

2W3 =-2/~(r)W~/2(r) -2/~(r) [1  + 2 ~  +l/t2r2]W2 

r 

+ f ~ [ ( 1  #2(01 r 2 ~ h 2 ) W l + ( l _ ~ ) W 2 ~  r 

R 
(A.13) 

where now Wi = ~ c  "I--" 

and 
B q = I t 9  q -  Oi'giSG,s (A.7) 

1 
I+ +2r2 0 0 

Bq = $2 2 (A.8) 
+/A2(r)r2 

¢ 

Hence from (A.3) through (A.8) we find: 

1 2 2 "]~W 2 c~W ~,, =2.(r)~7~(+2u(r) +--~+~, r ~_~+.Ir)~I3 

,~22 = 2/~(r)V~2 1 -lOW 
/ 

I- 2 2 -Idw + 2p(r)[ k 2 ~W 
bt (r)r 2 ~3I 3 

(A.9) 

Boundary  condit ions 

The unit normal to the curved surface of the cylinder is 
directed along the vector (~1 so that 

dl 
d = ~ =  (~1, n l = l  ' n2=n3= 0 (A.14) 

x/G II 

Since the curved surface at r = R  of the cylinder is free 
from applied stresses, the boundary condition is 

"t "11 = 'g12~-~-T13  at r = R  (A.15) 

This condition is satisfied identically for zm2=zt3=0 
everywhere. Then from (A.9) 

+2p(R)I1 + 1 2 2-]W. 2 z l l R  = O =  2 p ( R ) W  1 

(A.16) 
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and the constant of integration in equation (A.13) is 
evaluated to be zero. We can then write 

1 /a(r) -t-/~-2~ +@2r2 W2 

r 

÷ f ~ [ ( 1  /ar(r)l r 2 @ 2 ) W l + ( 1 - ~ ) W 2 ~ r  (A.17) 

R 

At the end Z = l  of the cylinder the unit normal is 
parallel to t~ a and, therefore, 

( ~ 3  

i f = - -  n3= l ,  n: = n 2 = 0  (A.18) 

where t~ a is the contravariant base vector in the deformed 
system. And the components of the forces acting on the 
plane defined by the unit normal are obtained from: 

P = ri;nids (A.19) 

where P defines the surface force vector and t~ s defines the 
covariant base vector of the deformed body. Then the 
tangential force in the r direction is given as: 

pl = (rllnl+z21n2 +z31n3). 
(~3 

= °  (A.20) 

the tangential force acting in the 0 direction is given as 

(~2 "C 23 (A.21)  p2 = (z12nl + z22n2 + z23na), x/_G_j2 = 

and the normal force acting in the Z direction is given as 

(~3 1.33 (A.22) p3 = (z13nl + z.23n2 + z33n3), x ~ 3 3  = 

Similar forces, only in opposite directions must be applied 
over the end Z = 0. 

Now the couple, T, acting on the cylinder end can 
readily be calculated as 

R R 

T=2~ f rap2dr=21~ f raz23dr 
o o 

R 

T=4 @ f  tr)EWl + W2]r3dr 
0 

(A.23) 

and the total normal force acting at the ends of the 
cylinder is given by 

R R 

N=21r f rp3dr=2n f rr33dr (A.24, 

0 0 

but from equation (A.9) we can determine that 

T33 = - -  2/.~(r)@2r2 W2 _1_ zl 1 (A.25) 

and then it follows from (A.12) that 

R R r 

N=-4 @ f ,(r)Wzr3dr+-4, frdrf '! r) 
0 0 R 

I (1  /~21(r) r 2 @ 2 ) W l + ( 1 - p 2 ~ ) W 2 1 d r  (A.26) 

Integrating the second term by parts and combining 
terms we find that 

R 

N = - 2zr@2 ~ #(r)[ W 1 + 2 W2] r3dr + 2~ 
i d  

0 
R 

f (W, + W2,(#(r)--~)rdr (A.27, 

0 

Equations (A.23) and (A.27) are readily compared with 
equations (3) and (4) for the torque and normal force in an 
imcompressible body. 

From Rivlin 2 similar equations can be written to 
describe the torque and normal force responses of a 
viscoelastic material in single step stress relaxation his- 
tories. Now, however, W = W(I~,I2,Ia,t ) is a function of 
time. 

APPENDIX B 

The determination of the strain potential function from 
torsion of a compressible cylinder 

In this appendix we follow the approach of Penn and 
Kearsley ~, who developed equations which permit the 
calculation of WI = OW/OI1 and I412 = ~W/OI2 from torque 
and normal force measurements of an incompressible 
elastic cylinder. Because, however, we now have a term 
W 3 = dW/OI 3 and an unknown volume change,/~(r), in the 
material we must make an assumption concerning the 
form of the strain energy function. Here we will assume 
that, the volume change is dependent only upon the 
product of the hydrostatic pressure and the compre- 
ssibility, as shown later. 

First, we follow Penn and Kearsley and make a variable 
change in equations (A.23) and (A.27). Let x = @ 2 r 2 ,  then 
(A.23) and (A.27) become: 

x 

0 

X 
/ i  

t/~(x)[W1 + 2W2]xdx N= @= 
0 

x +sf[,,., , . , ,  

0 

Now we wish to differentiate T with respect to @ and N 
with respect to @2. However, the radius, R, varies with @2. 
Since the changes in R are small we can expand R and so 
the limit of the integral X=@2R2 becomes 
X-- @2R2(1 +e) where e = e'@2/Ro. Then differentiating 
(B.1) with respect to @ and grouping terms we get 
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¢T¢ + 3 T ]  4[-1 +3e-1 
4n~bR~ =.u(R)[W, + W2](1 +e) [ l ~ e e J  (B.3) 

where T~=OT/O¢. Similarly differentiating (B.2) with 
respect to ¢2 we obtain 

¢2N¢,2 + N --(1 +e)'{u(R)(W, + 2W~)[~+~] 
(B.4) 

(W~+ W2)(p(R)--~R)-)(1 +2e)} 
R~(1 +~)3¢~ (B.4) 

ON 
where N~, - t~¢2. 

These equations are similar to those derived by Penn 
and Kearsley for the incompressible cylinder. The experi- 
mental variables which are easily obtained are R, T, T~,, N 
and N~2. In principle R (or e) can be obtained, although 
this is more difficult. However, the experimental results 
which have been obtained 7'8 indicate that e ~ 1 0  -4 to 
10 -3 and the errors introduced by ignoring this cor- 
rection are negligible relative to the experimental errors 
involved in measuring T, N, T~ and N~2. 

However, we still have only two equations [(B.3) and 
(B.4)] and three unknowns [W 1, WE and p(R)]. In order to 
resolve this problem we need to make some assumption 
about the strain energy function. Here we have decided to 
make the volume change a function of the pressure times 
the compressibility (inverse of the bulk modulus). Then we 
can write 

13 = 1 +pK-1 (B.5) 

TI1 +~.22 +l.33 
where p = is the hydrostatic pressure and K 

3 
is the bulk modulus. Then since p(r) = I a 1/2 we can solve 
(B.5) for p 

1.11 +.C22 +l.33 
Then from the definition of p -  

3 
(B.6), (A.16) and (A.9) we can write 

equations 

[ ] [ ( 1 1  2p(R) 1 1 )  p= /-~j-1 K=- X- +C,/(R)R, R, W~ 
1 1 1 +( 1 

/.t2 ,R )R 2 Rz)W2] ,B.7) 

Because equations (B.3) and (B.4) refer to/l(R), W1 (R) and 
W2(R) we need to evaluate (B.7) at R. In doing this we keep 
in mind that R = Ro(1 +e) where R 0 is the original radius 
of the cylinder. 

We then have three equations [(B.3), (B.4) and (B.7)] in 
three unknowns. These equations can be solved numeri- 
cally for W 1 (R), W2(R ) and p(R) using the experimental 
data for T, N, T~ and N,2. 

We also note that W 3 is then given by (A.16) as 

1 +¢2R2]W2 (B.8) W3 = p2 (R)W1 - #2(R)[1 + 

Here we note that the values of the deformation 
invariants, I1, 12 and I 3 at R are no longer the same as in 
pure torsion but rather are given by equations (A.5). 
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